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Abstract— Battery-powered sensors deployed in the Internet
of Things (IoT) require energy-efficient solutions to prolong their
lifetime. When these sensors observe a physical phenomenon
distributed in space and evolving in time, the collected obser-
vations are expected to be correlated. In this paper, we propose
an updating mechanism leveraging Reinforcement Learning (RL)
to take advantage of the exhibited correlation in the information
collected. We implement the proposed updating mechanism em-
ploying deep Q-learning. Our mechanism is capable of learning
the correlation in the information collected and determine the
frequency with which sensors should transmit their updates,
while taking into consideration a highly dynamic environment.
We evaluate our solution using environmental observations,
namely temperature and humidity, obtained in a real deployment.
We demonstrate that our mechanism is capable of adapting the
transmission frequency of sensors’ updates according to the ever-
changing environment. We show that our proposed mechanism
is capable of significantly extending battery-powered sensors’
lifetime without compromising the accuracy of the observations
provided to the IoT service.

Index Terms—Internet of Things (IoT), extending lifetime,
reinforcement learning, deep Q-learning

I. INTRODUCTION

Over the next few years, billions of devices are expected
to be deployed in the Internet of Things (IoT) network [1],
many of which will be low-cost sensors powered by non-
rechargeable batteries. These battery-powered sensors will pro-
vide vital information regarding the environment to numerous
services, e.g. smart farming [2], autonomous vehicles [3], air
pollution monitoring [4], etc. Providing accurate and up-to-
date information to services while keeping the battery-powered
sensors functional as long as possible is one of the primary
challenges in the IoT.

It is possible to take advantage of the correlation exhibited in
measurements when multiple sensors measure the same physi-
cal phenomenon occurring in the environment. In our work, we
utilise the correlation in the data collected by multiple sensors
to prolong battery-powered sensors’ lifetime. In particular, we
have designed an energy-efficient updating mechanism capable
of taking advantage of correlation exhibited in the collected
information by applying a Reinforcement Learning (RL) [5]
technique.

Most existing research that applies RL in the context of IoT
has focused on exploiting devices’ behaviour in the physical
layer to improve their energy performance. For example, in [6]
authors used Q-learning to enhance the spectrum utilisation

of industrial IoT devices. They demonstrated that devices
are capable of learning a channel selection policy to avoid
collisions, thus improving their energy efficiency. Similarly, in
[7], the authors applied Q-learning to improve device access
to the channel, to avoid collisions. The use of deep RL
was investigated in [8], where authors relied on Bluetooth
signal strength to improve indoor users’ location estimation.
In contrast to the works mentioned above and those described
in [9] focusing mostly on the physical layer, we learn from
information collected. Applying RL to learn from the content
of information collected to prolong the sensors’ lifetime has
not been proposed before, to the best of our knowledge.

In this paper, we propose an updating mechanism capable of
learning the frequency of updates, i.e., how often an IoT sensor
should transmit updated readings. Our approach prolongs
battery-powered sensors’ lifetime by leveraging correlation
exhibited in observations collected, without hindering the
accuracy and timeliness of the information provided to services
relying on these observations. We define the decision-making
problem that our proposed mechanism is capable of solving
in Section II. To solve the proposed problem using a Deep Q-
Network (DQN) [10], we describe the system dynamics using
states, actions, and rewards from an RL perspective (Section
IIT B). We also describe the overall mechanism in the form
of a block diagram (Section III C). We evaluate the proposed
mechanism using data obtained from a real deployment and
show that the system is capable of prolonging the minimum
expected sensor lifetime by over two and a half times (Section
IV). Finally, we discuss open issues and our future work
(Section V).

II. PROBLEM FORMULATION

In our work, we focus on inexpensive battery-powered sen-
sors transmitting observations. These sensors are constrained
in terms of available computing power, communication capa-
bilities, and energy. Furthermore, such sensors rely on the use
of sleep mode to preserve energy. When a sensor is in sleep
mode, the rest of the network cannot communicate with it.
Consequently, the network controller, responsible for collect-
ing observations, has to inform each sensor, while the sensor is
still in active mode, when it should wake up again and transmit
the next observation. The low power IoT sensor is usually
in active mode only after it has transmitted. For example, a
sensor using Long Range Wide Area Network (LoRaWAN)
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Fig. 1: Message sequence of an IoT sensor using LoRaWAN.

class A radio, will listen for two short time-windows after
it has transmitted, as illustrated in the LoRaWAN message
sequence in Fig. 1 [11].

The network controller has two objectives when setting
the transmission times for sensors. The first objective is to
satisfy the accuracy goals set by services for the collected
observations. The second objective is to prolong the lifetime of
battery powered sensors. Both objectives are achievable when
sensors gather correlated information, as we demonstrated
in [12]; our previous work, however, we did not propose a
procedure for the controller to establish the desired frequency
of updates. The network controller decides on the sensors’
next update time by evaluating the accuracy of collected
observation and the sensors’ available energy. We summarize
the decision-making process by the network controller in Fig.
2. In what follows, we present our methodology for modelling
the observations’ accuracy as well as the network controller
decision process.

A. Quantifying observations’ accuracy: LMMSE

We consider a network observing a phenomenon distributed
over a geographical area and evolving in time ¢. The network
employs N sensors deployed at positions ,,n = 1,..., N.
We use notation Z (x,,,t) to denote the value of the observed
physical process at time instance ¢, at location x,,. We can
write collected observations into a vector y = [y1, ... ,yN]T
with v, = Z(@n,t,) where t, € [0,t] is the latest time
at which sensor n has reported an observation. Then, using
a simple Linear Minimum Mean Square Error (LMMSE)
estimator, we can approximate the measurement at position
x at time instance ¢, as:

N
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where a,,n = 0,..., N are LMMSE estimator weights. We

obtain the LMMSE estimator weight vector a = [aq, . . ., an]"
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Fig. 2: A high-level overview of the decision-making process in a
network controller managing N IoT sensors.
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in which o represents standard deviation and p represents
covariance. Covariance provides a measure for the relation-
ship between two observations separated in time and space.
For example, when temperature changes at one location, the
covariance enables us to calculate the probability that the
temperature will also have changed by a certain value at
another distant location. In our model, Cyy captures the
covariance between observations at different locations, taken
at the same time, and C'y z captures the covariance between
observations taken at the same location, at different times. In
this work, we adopt the separable covariance model defined
in [13] that allows us to express the correlation between
two observations with time difference A;(¢) at locations at
a distance r; as:

pi(rist) = exp(=02(t)ri — 01(1)Aq(2)). “4)

Note that 6;(¢) and 62(t) are scaling parameters of time and
space, respectively. Both parameters change over time and are
extracted from the obtained observations. In our work, we
follow a scaling extraction method with Pearson’s correlation
coefficient formula for samples, as described in [14].

Using Eq. (1) and Eq. (2) we can obtain estimates for the
observed phenomenon, at the point x,,, even at time instances
in which the n-th sensor is in sleep mode. However, the system
requires a way to evaluate how accurate these estimations are.
For that purpose, we use the Mean Square Error (MSE):

e(x,t01(t),02(t)) = 0> — Czya, (5)

where C'zy is the transpose of Cy z defined above.

By assessing the quality of estimates in the absence of fresh
observations, the network controller can set the update times
in such a way to ensure accurate collection of observations.
However, the determined update time might not result in accu-
rate estimation of the observed phenomenon due to changes in
covariance model scaling parameters. The network controller
should be able to anticipate such changes and act before they
happen, i.e., while the sensor is still active. Additionally, the
controller should be aware of sensors’ available energy when
deciding on sensors’ next update time.



B. Prolonging sensors’ lifetime in a dynamic environment

The sensors’ lifetime depends on the frequency of transmit-
ted observations and on the continuous power consumption,
i.e., the minimal power sensors always require to function.
The sensor’s lifetime can be simply modeled as in [15]:

E()
E[E.,]’ (6)

_PC+T

E[L]

where P, represents the continuous power consumption, 7" de-
notes the time between updates, E[F;,.| represents the expected
energy required to acquire and transmit the observation, and
FE represents the sensors’ starting energy.

The network controller seeks to prolong the lifetime of
battery-powered sensors by maximising the time between two
consecutive updates by a sensor, while keeping the accuracy of
collected observations at every location of interest within the
pre-specified boundary. In a real deployment, services dictate
which locations are of interest. In this paper, we define every
sensor location, i.e., x,,, as a location of interest. The decision
is also based the on the sensors’ available energy, which the
network controller can determine from the sensor’s reported
power supply measurement. The network controller compares
each sensors’ energy with the energy available to other sensors
and decides on the update time accordingly. Ideally, the system
will set a higher update rate for a sensor with more available
energy, to provide a longer lifetime to those sensors with less
available energy.

In our system, the MSE continuously varies, as every
received observation can change the covariance model scaling
parameters. These changes are application-specific: for exam-
ple, in a smart factory, environmental changes are very fre-
quent due to many factory processes simultaneously impacting
the observed environment. In contrast, the changes in a smart
farming scenario tend to be much more gradual. However,
regardless of the frequency of changes, the system requires a
means to adapt sensors’ update time to the ever-changing en-
vironment. To that end, we propose for the network controller
to employ RL to decide on the next update time. Using RL,
the network controller can find a long-term updating policy
to collect accurate observations and prolong battery-powered
sensors’ lifetime.

III. REINFORCEMENT LEARNING APPROACH

RL allows an agent to learn its optimal behaviour, i.e., a
set of actions to take in every state, solely from interactions
with the environment. In our case, the agent is the network
controller. The goal of learning is to determine the next update
time at which each sensor should transmit its observations. Our
agent observes the environment through the value of the MSE
in the latest observation of the physical phenomenon reported
by each sensor, as well as the remaining energy available to
each sensor. The MSE is a non-stationary process, changing
with every new observation, and the system exhibits non-
Markovian properties. However, RL has been proven to be
applicable even when the system is non-Markovian [16]. In

such a case, using an Artificial Neural Network (ANN) enables
the agent to reconstruct the hidden part of environment in
the neural network. We implement the updating mechanism,
i.e., the network controller decision process of when a sensor
should transmit its next observation, using deep Q-learning.

A. Q-learning

The Q in Q-learning [17] stands for the quality of an action
in a given state. The learning agent should take the action
with the highest Q-value, unless the algorithm decides to
explore. The agent learns the best action possible by updating
the Q-value every time it takes an action and observes a
reward. When the agent takes enough actions in every state of
the environment, it can correctly approximate the real action
values, i.e., Q-values, associated with every state. With Q-
values determined, the agent can choose the optimal action in
every state. A Q-value is calculated as follows:

Q" (s,a) < Q(s,a) + a(R(s') + 7 max Q(s',a') — Q(s,a))

@)
where Q(s, a) is the previous Q-value, « is the learning rate,
is the discount factor, and R is the reward observed in the new
state s’ after taking action « in state s. The max, Q(s’,a’)
stands for an estimate of the optimal future value an agent can
acquire from the next state s’.

The role of the agent, i.e., the network controller, is to
determine the sensor state and to select the action with the
highest Q-value. Every time a sensor transmits an observation,
the network controller will respond by instructing the sensor
for how long it should enter sleep mode, i.e., set its next update
time. Next, we define states, actions, and reward functions,
i.e., a tuple in (S,.A, R) that enables the network controller
to determine sensors’ optimal update times.

B. States, Actions, and Rewards

Our state space, S, captures three critical aspects of the
decision-making process in the network controller: a sensor’s
current update time, its available energy, and the estimation
error value. Whenever a sensor transmits an observation, the
network controller stores the information regarding sensor’s
update time, i.e., T, available energy, i.e., E, and value of
average MSE since the last transmission, i.e., €. The learning
agent then uses those values to represent each sensor state. The
agent requires information regarding sensors’ update times and
MSE values to reconstruct the hidden part of the environment,
while the energy levels enable the agent to ascertain which
sensor in the network most needs to save energy. The total
number of states is:

S| = (TEe)Y, (8)

with IV representing the number of sensors under the agent’s
control. Using ANN can efficiently solve problems associated
with a sizable non-linear state space [10].

In contrast to the state space, we limit actions, i.e., the
cardinality of set A, to five. Actions enable an agent to learn



the best update time by decreasing or increasing the update
time in time-steps. Furthermore, the agent can select to make
a large or small step to adapt more quickly or more gradually.
We denote an action to increase the update time for one time-
step Uiner1 and for ten Ujper10. With Ugeer and Ugeerg we
denote a decrease of update time for one and ten time-steps,
respectively. If the agent decides to maintain the current update
time unchanged, it selects action U.y,s. As we show in the
next section, the system can, by using this action space, adapt
to any changes in the environment promptly. Additionally, a
limited action space prevents rapid fluctuations in the system
when the learning algorithm decides to explore.

We designed the reward function to aid the agent to quickly
adapt to the changing environment.To achieve both network
controller objectives, i.e., collecting accurate observations and
prolonging sensors’ lifetime, we split the reward function into
two parts as follows:

R(S) = ¢accRacc(5) + ¢enRen(5)~ &)

Race(s) rewards accurate collection of observations and
Ren(s) rewards energy conservation. We weigh each part
of the reward function, with ¢,.. for accuracy, and ¢, for
energy. Our learning agent receives the reward after taking a
decision for the update time and receiving the next update from
the sensor. We define this learning cycle as one episode, i.e.,
our agent receives the reward after the end of each episode.

The accuracy reward depends on whether the set accuracy
boundary, i.e., £¢4,-, Was satisfied in the episode. We compare
the average MSE in an episode, i.e. Z(t), to the target MSE.
The accuracy reward is as follows:

when 2(t) < egqr :
(E9)? 4 1024(1)

Etar

Racc(s) = (10)

when E(t) > etqr :
(H=eeer)? 1024 (2)
Etar

where £ (t) is the difference in the average estimation error
in since the last transmission, i.e., Ea(t) = (t) —&(t — T).
Our objective is for the average MSE observed in an episode
to be as close as possible to the target €,,,, without exceeding
it. The accuracy reward in Eq. (10) accomplishes that.

Our energy reward function depends on the change in the
update times and how a sensor’s available energy compares
to the average sensor’s energy in the network. We write the
energy reward as follows:

2(E‘a'ug_E)

o , if Ta >0
Ren(s) = Eﬁ% if Ta=0 , (11)
AE—Eavg) if Ta <0

avg

where Ta represents the change in update time, E is the
sensor’s available energy, and E,,, is the average energy
available among all sensors in the network.
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Fig. 3: Diagram of the proposed updating mechanism.
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Fig. 4: We employ ANN with two hidden layers, each with 24
neurons. We use MSE loss function and Adam optimization algorithm
to train ANN weights. We apply ReLU activation function for the
hidden layers and linear activation function for the output layer.

C. Proposed learning scheme

Figure 3 shows a high-level model of our proposed mech-
anism. Sensors collecting information, along with the part of
the network controller responsible for processing information,
represent the external environment to our learning agent. An
observation sent by an IoT sensor starts the learning cycle.
The network controller then passes the necessary information
(state and reward) to the learning agent. The learning agent
then updates the state space and passes these updates to
the ANN. The output of the ANN indicates which action
the network controller should take (i.e., the action with the
highest Q-value). The updating mechanism uses an e-greedy
approach: in our case, € = 0.15. Due to constant changes in
the environment, the learning agent has to sometimes explore
random actions to find the optimal action. In the last step,
the network controller then transmits the action, i.e., the new
update time, to the IoT sensor.

We implemented the ANN, as presented in Fig. 4, using
Keras [18], a deep learning Python library. To train the ANN,
the learning agent requires the values of state spaces of N
sensors and corresponding Q-values. The first inserted state
space values (71 €, Ep) are from the sensor that transmitted
last, followed by the state space values of the second last
sensor (15 €2 E5), and so on. We train the ANN periodically,
using batches of recently observed states, rewards, and actions,
to shorten the response time. Our learning agent is capable
of responding within 2 to 3 ms, thus satisfying the timing



constraints set by sensors’ communications technology. For
example, a device using LoRaWAN radio typically enters hi-
bernation mode for more than a second. Additionally, response
messages impose no additional energy cost to a sensor because
the communication standard requires it to always listen to the
channel before entering sleep mode.

We evaluate our mechanism using data obtained from a real
deployment, presented in the next section.

IV. EVALUATION

In this section, we evaluate our proposed solution using data
provided by the Intel Berkeley Research laboratory [19]. In our
simulated network, sensor locations and transmitted observa-
tions (temperature and humidity) are based on the provided
Intel data. We use nine days of measurements collected from
50 sensors. We list the static simulation parameters in Table I.
The selected energy parameters mimic power consumption of
an IoT sensor using LoRaWAN radio. We obtained the power
parameters following the analysis presented in [20].

In our simulations, we set the time-step (¢s) to 10s. Each
sensor starts with the same update time. We selected the
starting update time for temperature, i.e., Tj;, and humidity,
i.e., Ton, by analyzing the dataset. We determined that if
sensors transmit temperature updates every 1003s the aver-
age difference between two consecutive observations will be
£0.30 °C, and if they transmit a humidity observation every
968s the average difference between consecutive observations
will be 0.5%. For a fair comparison, throughout our evaluation,
the updating mechanism keeps the average accuracy of tem-
perature estimations within 0.30 °C of the real temperature and
within 0.5% of the real air humidity percentage. To reduce the
amount of required computations for MSE and estimation of
real value we limit the number of used observations. We take
eight observations from the sensors closest to the estimation
location.

TABLE I: Simulation Parameters

Parameter  Value || Parameter Value
d)acc 6 ¢en 4
@ 1 0% 0.2
Tot 100 ts Ton 97 ts
time-step (ts) 10s P, 15uW
Eo 66967 E[E:,] 78.7mJ
€ 0.15

In Fig. 5 we show the change of update time and £ over
a number of episodes for two sensors in a system of eight
sensors. We iterate over the dataset four times. Each number
in Fig. 5 represents the end of a dataset iteration. In Fig. 5(a)
we plot the update time over a number of episodes for a
sensor with above average available energy (95%), while in
5(b) we plot update times of a sensors with below average
energy (50%). As we show, our updating mechanism sets the
update time of a sensor with less energy significantly higher in
comparison to the update time of a sensor with more energy
available. Our updating mechanism is trying to balance the
energy levels among sensors by setting a uneven update time.

(a) T for IoT Sensor 1

(b) T for IoT Sensor 2

episodes

500 1,000
(c) € for IoT sensor 1

episodes

500 1,000
(d) € for IoT sensor 2
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1,000
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Fig. 5: Two IoT sensors learning over a number of episodes. The
numbers in the graphs mark the end of an iteration over the dataset.
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Fig. 6: Updating mechanism searching for the optimal update time,
arrows indicate change in the covariance model scaling parameters
Or E¢qr.

Simultaneously, as we show in Fig. 5(c) and (d) the agent is
keeping the MSE close to the set target, i.e., €¢qr.

To show that the updating mechanism is capable of finding
the optimal solution, i.e., capable of determining the max-
imal update time possible, we then test the mechanism’s
performance in a system with only two sensors. We set only
one sensor in the learning mode while the other keeps the
update time constant. Furthermore, covariance model scaling
parameters changed only in selected episodes. Such a system
enables us to also obtain the optimal solution for comparison
purposes. We changed the scaling parameters at episode 50.
At episode 100 we changed e4,,-. The mechanism is always
capable of adapting and finding the optimal update time, as
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Fig. 7: Sensors’ lifetime and lifetime gain achieved by our updating
mechanism as the number of sensors under its control increases.

shown in Fig. 6(a). In Fig. 6(b), we show the change of €
over a number of episodes: the mechanism always converges
toward the selected €44

Next, we test the updating mechanism performance as the
number of sensors, N, under its management increases. The
expected lifetime of sensors increases with more sensors in
the network, as we show in Fig. 7(a). The gain for using
correlated information is higher when observing humidity, due
to higher correlation exhibited in the observations collected.
We calculate the expected lifetime using Eq. (6). In our
calculation, we use the average update time our updating
mechanism achieves on the 9" day. We assume that each
sensor is equipped with a 620mAh Lithium battery. To show
the improvement in comparison to the baseline case, we
calculate the lifetime gain, i.e., 7;, as the ratio between the
lifetime achieved using our mechanism and that achieved in
the baseline case:

_ E[£]
~ E[Lo]

We calculated the baseline E[L] using To; and Top, resulting
in the expected lifetime of 2.26 years when observing temper-
ature, and 2.05 years when observing humidity. Our updating
mechanism can significantly prolong the expected lifetime
of battery-powered devices. When measuring humidity the
expected sensor lifetime can be extended to over four years,
while for sensors measuring temperature the expected lifetime
extends to over three and a half years.

7 : (12)

V. FINAL REMARKS AND FUTURE WORK

In this paper, we applied deep Q-learning to prolong the
lifetime of battery-powered sensors. The proposed updating
mechanism is capable of adjusting updates according to a
sensor’s available energy and the sensed accuracy of the
observed physical phenomenon. We demonstrated that it is
capable of performing in a dynamic IoT network environment.
We evaluated our proposed mechanism using data obtained
from a real deployment. Our results show that it is possible
to increase the lifetime of battery-powered sensors by a factor
of three by taking advantage of correlated information.

In our future work, we will consider a network of sensors
using different primary power sources, e.g., mains powered
or event-based energy harvesting. To provide the network

controller with a capability to manage such devices effectively,
we will expand the list of available actions. Additionally, we
will design a new reward function to reflect the different
energy sources across the sensors. In such a network, the
primary goal of learning will be achieving an energy-aware
balanced scheduling of sensors’ updates.
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